
The ten most common security vulnerabilities
don’t stand a chance against secure
development superheroes like you. This is your
ultimate field guide to understanding each
infamous entry in the OWASP Top 10 2017,
gaining insight into how each bug operates.
You’ll see why they’re so dangerous, and most
importantly, how you can banish every one
of them from your software forever.

CODERS CONQUER SECURITY:
YOUR BATTLE PLAN TO DEFEAT THE

OWASP TOP 10

You have received a series of missions from Secure
Code Warrior. Learn how your targets work, understand
their motives, and finally, destroy them. You will
have the opportunity to test your skills in our online
battleground after reading about each vulnerability.

INDEX

GOOD LUCK NEW WARRIOR

Insufficient Logging & Monitoring

Using Components with Known Vulnerabilities

Insecure Deserialization

Cross-Site Scripting (XSS)

Security Misconfiguration

Broken Access Control

XML External Entities (XXE)

Sensitive Data Exposure

Broken Authentication

Injection

Insufficient logging and monitoring is one of the most dangerous conditions that can
exist within a network defensive structure. If this vulnerability or condition exists,
then almost any advanced attack made against it will eventually be successful. Having
insufficient logging and monitoring means that attacks or attempted attacks are not
discovered for a very long time, if at all. It basically gives attackers the time they need to
find a useful vulnerability and exploit it.

How Do Attackers Exploit
Insufficient Logging and Monitoring?

At first, attackers don’t know if a system is being properly monitored, or if log files are
being examined for suspicious activity. But it’s easy enough for them to find out. What
they will sometimes do is launch some form of inelegant, brute force type of attack,
perhaps querying a user database for commonly used passwords. Then they wait a few
days and try the same kind of attack again. If they are not blocked from doing it the
second time, then it’s a good indication that nobody is carefully monitoring the log files
for suspicious activity.

Even though it’s relatively simple to test a network’s defenses and gauge the level of
active monitoring happening, it’s not a requirement of successful attacks. In fact, hackers
don’t need to do anything to actively exploit the situation caused by insufficient logging
and monitoring. They can simply launch their attacks in such a way as to make as little
noise as possible. More often than not, the combination of too many alerts, alert fatigue,
poor security configurations or simply a plethora of exploitable vulnerabilities means
that they will have plenty of time to complete their goals before defenders even realize
that they are there.

INSUFFICIENT
LOGGING & MONITORING

IN THIS CHAPTER WE WILL LEARN:

	 How attackers can use insufficient logging
and monitoring

	 Why insufficient logging and monitoring
is dangerous

	 Techniques that can fix this vulnerability

Why is Insufficient Logging and
Monitoring Dangerous?

Insufficient logging and monitoring is dangerous because it gives attackers time to not
only launch their attacks, but to complete their goals long before defenders can launch
a response. How much time depends on the attacked network, but different groups like
the Open Web Application Security Project (OWASP) puts the average response time for
breached networks at 191 days or longer.

Think about that for a moment. What would happen if robbers held up a bank, people
called the police, and it took them half a year to respond? The robbers would be long
gone by the time police arrived. In fact, that same bank can be robbed many more
times before the police even respond to the first incident.

It’s like that in cybersecurity too. Most of the high profile breaches that you hear
about on the news were not smash and grab type of operations. Often times the
targeted organization only learns about a breach after the attackers have had more
or less full control over data for months or even years. This makes insufficient logging
and monitoring one of the most dangerous situations that can happen when trying to
practice good cybersecurity.

INSUFFICIENT LOGGING & MONITORING CONT'

OFTEN TIMES THE TARGETED
ORGANIZATION ONLY LEARNS ABOUT
A BREACH AFTER THE ATTACKERS
HAVE HAD MORE OR LESS FULL
CONTROL OVER DATA FOR MONTHS
OR EVEN YEARS.

Eliminating Insufficient Logging and Monitoring

Preventing insufficient logging and monitoring requires two main things. First, all
software must be created with the ability to monitor and log server-side input
validation failures with enough user context for security teams to identify the tools and
techniques, if not the user accounts, that attackers are using. Or, such input should be
formatted into a language like STIX (Structured Threat Information eXpression) which
can be quickly processed by security tools to generate appropriate alerts.

Secondly, it’s not enough to simply generate good alerts, though that is a start.
Organizations also need to establish roles and responsibilities so that those alerts are
investigated in a timely fashion. Many successful breaches actually triggered alerts on
the attacked networks, but those warning were not heeded because of questions of
responsibility. Nobody knew whose job it was to respond, or assumed that someone
else was looking into the problem.

A good place to start when assigning responsibilities is adopting an incident response
and recovery plan like the one recommended by the National Institute of Standards and
Technology (NIST) in special publication 800-61. There are other reference documents,
including ones specific to various industries, and they don’t have to be followed to the
letter. But forming a plan defining who within an organization responds to alerts, and
how they go about doing that in a timely fashion, is critical.

REQUEST A TEAM DEMO

TEST YOUR SKILLS

INSUFFICIENT LOGGING & MONITORING CONT'

 MORE INFO ABOUT INSUFFICIENT
LOGGING AND MONITORING
For further reading, you can take a look at what

OWASP says about insufficient logging and monitoring.

You can also put your newfound defensive knowledge

to the test with the free demo of the Secure Code

Warrior platform, which trains cybersecurity teams to

become the ultimate cyber warriors.

https://securecodewarrior.com/request-demo?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10
https://portal.securecodewarrior.com/#/website-trial/web/insufficient_logging/generic/c_sharp/web_forms?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

What is the one thing inherent in all software? Components, also known as
dependencies or libraries. There is very little code in the world that doesn’t depend on
other code at some point in time. You even start with a mountain of dependencies from
the time you create the software!

Since all software uses components, most of which you haven’t written, vulnerabilities
within the components you use can become liabilities.

Understand Using Components
with Known Vulnerabilities

All complex software has vulnerabilities. That’s just the nature of the beast,
unfortunately. You may never know if your components are 100% safe, however,
when vulnerabilities are found in components, you can certainly arm yourself with the
knowledge to fix them.

Problems arise most often when components are used past their useful life or after
vulnerabilities are found. Most components and libraries release patches for security
vulnerabilities at or before the same time the vulnerability is announced. Therefore,
when vulnerabilities in components are discovered and announced, updating the
components as soon as possible is of utmost importance. Don’t leave vulnerable
software in production.

USING COMPONENTS WITH
KNOWN VULNERABILITIES

LET’S DISCUSS WHAT USING
COMPONENTS WITH KNOWN
VULNERABILITIES MEANS,
HOW DANGEROUS IT IS,
AND HOW TO RESOLVE IT.

https://www.youtube.com/watch?v=UVW1YhzfYUY&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Components can come from several sources. Sometimes you buy third-party vendor
products which integrate directly with your custom code. These components become a
part of your code and operate at the same level of privilege. Another origin is via open
source projects hosted on sites such as GitHub. Open source can be dangerous since
not all open source libraries have been carefully vetted or audited for vulnerabilities.

Attackers use component vulnerability information to their advantage. Since the
vulnerabilities are announced publicly, attackers know about the vulnerabilities the
same time you do. Attackers also have techniques they can use to find out what
components you’re using. Once they know this information, they’ll know how to attack
your software if it isn’t patched.

Why Vulnerable Components are Dangerous

If you’re looking for evidence of how dangerous using components with known
vulnerabilities is, look no further than the Equifax breach of 2017.

In July of 2017, Equifax, a United States credit bureau, discovered a massive data
breach which leaked the personally identifiable information of over 147 million people.
The scope and impact of this data breach is unprecedented. Recently, news has come
out about Equifax’s lax security practices.

One of those lax practices was patch management. Equifax didn’t have good patch
management practices, which meant their components would go quite some time
without getting patched. This was the direct cause of the breach.

Equifax’s website used the Apache Struts web framework. Several months before the
attackers hacked into the network, a vulnerability was found in the Struts framework,
Apache Struts CVE-2017-5638. However, Equifax didn’t patch the vulnerability.
Attackers used this vulnerability to gain access to Equifax’s network. From there, they
gained access to a treasure trove of personal information.

Many websites are based on web frameworks not written by the company. This is
standard practice since building in all of the necessary functionality from scratch would
be too large of an undertaking. However, depending strongly on a framework can open
you up to vulnerabilities. Don’t become the next Equifax.

USING COMPONENTS WITH KNOWN VULNERABILITIES CONT'

IN JULY OF 2017, EQUIFAX, A UNITED
STATES CREDIT BUREAU, DISCOVERED A
MASSIVE DATA BREACH WHICH LEAKED THE
PERSONALLY IDENTIFIABLE INFORMATION
OF OVER 147 MILLION PEOPLE.

How You Can Defeat Vulnerable Components

There is no silver bullet to protecting against using vulnerable components. However,
there are policies and controls you can use to mitigate the risk of vulnerable
components being used to compromise your systems.

You need to know what components and which version of each component you’re
using to build your software. Dependency management tools such as OWASP’s
Dependency Check help you to get a handle on what dependencies you’re using.
Dependency Check will also tell you if any of those components has a publicly disclosed
vulnerability.

A patch management methodology is also essential. When vulnerabilities are
discovered, have a system in place for the patches to be downloaded, tested, and
released into production smoothly. Keeping your software patched prevents months-
old vulnerabilities from being used by attackers.

Finally, have policies in place governing the use of open source and third-party
components. Developers don’t like to have red tape, and that is understandable.
However, there has to be a vetting process for code not written by your organization. It
doesn’t have to be heavyweight, but is a must to prevent unknown components from
being used. At the least, an inventory of components used must be kept up-to-date.

Don’t Get Bitten by a Third-Party Bug

Components will have vulnerabilities. You business software will use components,
whether from a vendor or from an open source library. This doesn’t mean your
organization need be vulnerable to attack.

Even though attackers know what vulnerabilities exist at the same time you do,
patches are usually made available at the same time as the public announcements.
Be sure to keep track of what your software is using, what is vulnerable and keep your
components patched.

USING COMPONENTS WITH KNOWN VULNERABILITIES CONT'

CHALLENGE ME

THINK YOU’RE READY TO
FIND AND FIX VULNERABLE
COMPONENTS RIGHT NOW?

https://portal.securecodewarrior.com/#/website-trial/web/vulncomponents/known/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Depending on the software, the process of serialization can happen all the time. It’s the
term used to describe whenever data structures or object states are translated into a
format that can be stored or possibly sent as a communication. Deserialization is the
opposite of this process, taking the now structured data and turning it back into the
object or data string that it was before storage.

Insecure deserialization can happen whenever software treats data being deserialized
as trusted. If a user is able to modify the newly reconstructed data, they can perform
all kinds of malicious activity such as code injections, denial of service attacks or simply
changing the data to give themselves some advantage within the software like lowering
the price of an object or elevating their privileges.

How do Attackers Exploit Insecure Deserialization?

These days, the most popular data format for serializing data is JSON, though XML is
a close second. Quite a few programming languages also offer their own methods for
serializing data which often contains more features than JSON or XML. In any case,
problems can occur if developers program apps to treat deserialized data as trusted
input, as opposed to following the old mantra you probably learned from other blogs in
this series, specifically: “Never trust user input!”

User input is never to be trusted because the user can then insert things like code into
those strings, which might accidentally be executed by the receiving server. And since
raw deserialized data can also sometimes be accessed and exploited, it needs to fall into
that same untrusted category.

For example, if forum software uses PHP object serialization to save a cookie containing
a user’s identification, role and password, then that can be manipulated. A malicious
user might change their “user” role to “admin” instead. Or, they can use the opening
provided by the data string to inject code, which might be misinterpreted and run by the
server as it processes the “trusted” data.

INSECURE
DESERIALIZATION

IN THIS EPISODE WE WILL LEARN:

	 How attackers can exploit insecure
deserialization

	 Why insecure deserialization is dangerous

	 Techniques that can fix this vulnerability

https://www.youtube.com/watch?v=aC-nCEOVdKE

Why is Insecure Deserialization Dangerous?

It’s true that this kind of attack requires some modicum of skill on the part of a hacker,
and sometimes trial and error while the attacker learns what kinds of code or exploits
the server will accept from their manipulated, deserialized data. That said, this is a
commonly exploited vulnerability because of the potential power it gives to hackers
skilled enough to use it.

Depending on how the deserialized data is supposed to be used, any number of
attacks, including many that we covered in previous blogs, can be employed. Insecure
deserialization can be a gateway to remote cross code injection, cross site scripting,
denial of service, access control hijacking, and of course SQL and XML injection attacks.
It basically opens up a launching point, declares all the data being deserialized to be
trusted, and lets the attackers try and exploit it.

Eliminating Insecure Deserialization

The safest thing that organizations can do to prevent insecure deserialization is to
restrict software from accepting deserialized data. That may not be possible or realistic
however, but no worries, because there are other techniques that can be employed to
defend against this kind of attack.

If possible, data can be sanitized to something like numeric values. This might not
totally stop an exploit, but would prevent code injections from occurring. Even better is
simply requiring some form of integrity check against deserialized data such as a digital
signature, which could ensure that data strings have not been manipulated. And all
deserialization processes should be isolated and run in a low privilege environment.

Once you have those protections in place, be sure to log all failed deserialization
attempts, as well as network activity coming from containers or servers that deserialize
data. If a user triggers more than a couple deserialization errors in the logs, it’s a
good indication that they are either a malicious insider or have had their credentials
hacked or stolen. You might even consider things like automatic lockouts for users that
constantly trigger deserialization errors.

Whichever of these tools you employ to fight insecure deserialization, remember that
at the core, this is data that might have been touched or manipulated by a user.

Never trust it.

INSECURE DESERIALIZATION CONT'

CHALLENGE ME

 MORE INFORMATION ABOUT USING
COMPONENTS WITH KNOWN VULNERABILITIES
For further reading, you can take a look at what OWASP says about insecure
deserialization. You can also put your newfound defensive knowledge to the
test with the FREE DEMO of the Secure Code Warrior platform.

https://portal.securecodewarrior.com/#/website-trial/web/injection/deserialization/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Web browsers might be our gateway to all that great stuff online, but sadly, it’s not
all good news. The inherent behavior of web browsers can be a catalyst for security
vulnerabilities. Browsers began by characteristically trusting the markup it saw and
executing it without question. That’s all fine and dandy until that functionality is
exploited for unsavory purposes… and naturally, attackers eventually found ways to
exploit this tendency to further their evil ends.

Cross-site scripting (XSS) uses the trust of browsers and ignorance of users to steal
data, take over accounts, and deface websites; it’s a vulnerability that can get very
ugly, very quickly.

Let’s take a look at how XSS works, what damage can be done, and how to prevent it.

How does XSS work?

XSS occurs when untrusted input (often data) is rendered as output on a page but
misinterpreted as executable code. An attacker can place malicious executable code
(HTML tags, JavaScript, etc.) within an input parameter, which -- when returned back to
the browser -- is then executed instead of displayed as data.

As mentioned above, the vulnerability appeared due to the core functioning behavior
of browsers, where it is difficult to distinguish data from executable code. The operating
model of the web is as follows:

	 User visits a web page

	 The page tells the browser what files to load and what to execute

	 The browser executes what is on the page, no questions asked

This functionality has led to some of the most awesome, interactive experiences we
enjoy on the web. The other side of the coin is that it has also led to costly exploits and
vulnerabilities. When attackers add their malicious script to a vulnerable site, it is executed
without question. There is no deeper investigation, nor detection measures in place.

CROSS-SITE SCRIPTING
(XSS)

WHEN ATTACKERS ADD
THEIR MALICIOUS SCRIPT TO A
VULNERABLE SITE, IT IS EXECUTED
WITHOUT QUESTION. THERE IS
NO DEEPER INVESTIGATION,
NOR DETECTION MEASURES IN PLACE.

https://www.youtube.com/watch?v=H22cJTqCgUA&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

There are three types of XSS:

1	 Stored XSS

2	 Reflected XSS

3	 DOM XSS

Stored XSS occurs when an attacker can persistently store the malicious script in
a data field of the software (e.g. in a field that stores the user’s mobile phone number).
This sketchy script is then sent to a user’s browser every time that data field is displayed
in the software.

This type of attack is often seen on forum sites or commenting engines. An attacker
enters the malicious script in a comment, and bam - every user who views that
comment unknowingly executes the script.

Reflected XSS occurs when user input is reflected back to the user’s browser
as-is. An example is a search box that displays, “You searched for …” to the user while
fetching search results.

Now, imagine that the search works by placing the search term in the URL as query
parameters. A malicious attacker could send the victim a link with the malicious script
embedded in those very same parameters and truthfully, most web users would barely
notice it. The victim clicks the link and is redirected to a phishing site where he/she
unwittingly enters their password for the site. Little do they realize, an attacker has just
stolen the key to their account.

DOM XSS is a relatively new variety of this vulnerability. It takes advantage of
complex templating structures found in many UI frameworks such as Angular and React.
These templates allow for dynamic content and rich UI software. If used incorrectly,
they can be used to execute XSS attacks.

So, there you have it. You’ve got the scope of XSS in a nutshell.
Let’s dive deeper into how it can be used destructively.

CROSS-SITE SCRIPTING (XSS) CONT'

XSS can be used to redirect users
to malicious sites, steal cookies and
hunt for session data. Basically,
whatever JavaScript can do, XSS
attacks are capable of as well.

Why is XSS so dangerous?

XSS can be used to redirect users to malicious sites, steal cookies and hunt for session
data. Basically, whatever JavaScript can do, XSS attacks are capable of as well.

XSS attacks are deceptively simple and very serious. They can lead to the theft of
sessions, user credentials or sensitive data. Reputational damage and decreased
revenue are major pitfalls of these attacks. Even just defacing a website can lead to
undesirable consequences for a business.

However, XSS can be defeated by a savvy security warrior just like you. The fix is not
complicated and the industry has come a long, long way since XSS became a commonly
used exploit.

You can defeat XSS

The key to defeating XSS is understanding the context. Specifically, the context in which
your user input will be rendered back to the client and where it will be rendered back.
Inside the HTML code, or inside a JavaScript snippet.

If user input doesn’t have to be sent back to the browser, so much the better. But if it
is, it often should be HTML-encoded. HTML encoding the output will tell the browser to
render the content as-is and not to execute it.

Input validation is important as well. However, validation and whitelisting are not
foolproof solutions. Encoding goes a few steps further and stops browsers from
executing a malicious script. Whatever is not caught with validation and whitelisting
strategies, encoding will pick up.

Many frameworks are now encoding HTML output automatically. Angular, ASP.NET
MVC, and React.js are frameworks where default HTML encoding is used. You have to
specifically tell these frameworks not to encode by calling a special method.

Most other frameworks, (i.e. Django and Spring) have standard libraries for XSS
prevention that you can easily incorporate into your code.

HERE ARE THREE EXAMPLES OF XSS ATTACKS:
1	 Yahoo email users had their session cookies stolen using

XSS in 2015.

2	 The Samy worm was distributed via an XSS vulnerability
in MySpace. It is still the fastest-spreading malware of all
time, affecting one million users in just 20 hours.

3	 eBay allowed malicious scripts to be included in product
descriptions. This led to XSS attacks against eBay users.

CROSS-SITE SCRIPTING (XSS) CONT'

XSS

 C
OD

ER

S CON
QUER SECURITY

S h a r e a n d L e a r n S e r i e
s

 C
OD

ER

S CON
QUER SECURITY

S h a r e a n d L e a r n S e r i e
s

The biggest challenge is teaching yourself to analyze all of the ways that user input can
enter a system so you can keep your eyes peeled for it. Query parameters can carry
attacks, as can post parameters. Follow the flow of data throughout your software and
do not trust any data that comes from outside.

Think like border patrol. Stop every piece of data, inspect it, and don’t allow it in if it
looks malicious. Then encode when rendering to ensure that any bad stuff that was
missed still won’t cause problems.

Execute these strategies, and your users will be safe from attack via XSS. Take a look at
the OWASP Cheat Sheet for even more tips to keep your data under control.

CROSS-SITE SCRIPTING (XSS) CONT'

STOP. INSPECT. ENCODE.

PLAY NOW

Thwart XSS and level up your security skills.

XSS resides at number seven on the OWASP Top 10 2017 list of web security risks. It has
been around for a while, but it can still appear and cause problems with your software
if you’re not careful.

Training is so important for developers in building a security-first mindset as they craft
code. And, that training is always at its most effective when it simulates real software,
in the languages developers are actively using. With that in mind, why not check out
our Learning Resources to learn more about XSS? After that, you can begin the training
and practice that leads to your mastery.

THINK YOU'RE READY TO FIND AND FIX
XSS VULNERABILITIES RIGHT NOW?
CHALLENGE YOURSELF ON THE
SECURE CODE WARRIOR PLATFORM.

https://portal.securecodewarrior.com/#/website-trial/web/xss/stored/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

The term security misconfiguration is a bit of a catchall that includes common
vulnerabilities introduced due to the software’s configuration settings, instead of bad
code. The most common ones normally involve simple mistakes that can have big
consequences for organizations that deploy apps with those misconfigurations.

Some of the most common security misconfigurations include not disabling debugging
processes on apps before deploying them to the production environment, not letting
software automatically update with the latest patches, forgetting to disable default
features, as well as a host of other little things that can spell big trouble down the road.

The best way to combat security misconfiguration vulnerabilities is to eliminate them
from your network before they are deployed to the production environment.

How do Attackers Exploit Common
Security Misconfigurations?

There are a lot of common security misconfigurations. The most popular ones are
well-known in hacker communities and are almost always searched for when looking for
vulnerabilities. Some of the most common misconfigurations include, but are not limited to:

	 Not disabling default accounts with well-known passwords.

	 Leaving debugging features turned on in production that reveal
stack traces or other error messages to users.

	 Unnecessary or default features left enabled, such as
unnecessary ports, services, pages, accounts, or privileges.

	 Not using security headers, or, using insecure values for them.

SECURITY
MISCONFIGURATION

IN THIS CHAPTER, WE WILL LEARN:

	 How hackers find and exploit common
security misconfigurations

	 Why security misconfigurations can
be dangerous

	 Policies and techniques that can be employed
to find and fix security misconfigurations

https://www.youtube.com/watch?v=iSYD7vOlSJs&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Some misconfigurations are well-known and trivial to exploit. For example, if a default
password is enabled, an attacker would only need to enter that along with the default
username to gain high-level access to a system.

Other misconfigurations require a bit more work, such as when debugging features are
left enabled after an app is deployed. In that case, an attacker tries to trigger an error,
and records the returned information. Armed with that data, they can launch highly
targeted attacks that may expose information about the system or the location of data
they are trying to steal.

Why are Security Misconfigurations so Dangerous?

Depending on the exact security misconfiguration being exploited, the damage
can range from information exposure to complete software or server compromise.
Any security misconfiguration provides a hole in defenses that skilled attackers can
leverage. For some vulnerabilities, such as having default passwords enabled, even an
inexperienced hacker can exploit them. After all, it doesn’t take a genius to look up
default passwords and enter them!

Removing the Threat Posed by
Security Misconfigurations
The best way to avoid security misconfigurations is to define secure settings for all apps
and programs being deployed across an organization. This should include things like
disabling unnecessary ports, removing default programs and features not used by the
app, and disabling or changing all default users and passwords. It should also include
checking for and dealing with common misconfigurations, such as always disabling
debugging mode on software before it hits the production environment.

Once those are defined, a process should be put in place, one that all apps go through
before they are deployed. Ideally, someone should be put in charge of this process,
given sufficient power to enforce it, and also responsibility should a common security
misconfiguration slip through.

 MORE INFORMATION ABOUT SECURITY MISCONFIGURATIONS
For further reading, you can take a look at the OWASP list of the most common security
misconfigurations. You can also put your newfound defensive knowledge to the test
with a FREE DEMO of the Secure Code Warrior platform, which trains cybersecurity
teams to become the ultimate cyber warriors. To learn more about defeating this
vulnerability, and a rogues’ gallery of other threats, visit the Secure Code Warrior blog.

READY TO THWART A SECURITY
MISCONFIGURATION RIGHT NOW?
HEAD TO OUR PLATFORM AND CHALLENGE YOURSELF

SECURITY MISCONFIGURATION CONT'

PLAY NOW

https://portal.securecodewarrior.com/#/website-trial/web/infoexposure/misconfig/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

When you build business software, whether for internal use or external use
by your customers, you probably don’t let every user perform every single
function. If you do you may be vulnerable to broken access control.

Business software has a rich set of functions, sometimes up to hundreds.
However each of these functions should not be used by every single user in
the system.

Understand Broken Access Control

Broken access control occurs when software code does not have the proper
security or access checks in place. It can also occur when software is misconfigured
in some way that allows access to functions or pages to which the user should not
have access.

If you handle the finances of your company you may have access to deposit money
into certain accounts or transfer money between your company’s accounts.
However, you shouldn’t have access to withdraw money from those accounts or
transfer money to accounts outside of your company’s control. If the proper access
checks are not present, then your employees may be able to do more functions
than necessary.

These checks can either be done within the code itself or some configuration files.
For example, there may be XML configuration files which tells the web software
framework which users are allowed to access which pages. This ensures that only
the right people are seeing the right functions.

BROKEN
ACCESS CONTROL

XSS
LET’S TAKE A LOOK AT WHAT BROKEN
ACCESS CONTROL IS, WHY IT’S SO
DANGEROUS, AND HOW TO FIX IT.

https://www.youtube.com/watch?v=Mq7svP7J2YY&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Why Broken Access Control is Dangerous
Consider an example. An attacker has realized that your user account creation code
can be manipulated to allow the attacker to create an admin user with a simple post
request. They can send a request with the username and password and then change
the request on route to include the role of admin in the URL as a parameter or in
the body of the request. The attacker logs into the software and is instantly given
administrator rights.

It doesn’t always have to be a malicious attacker attacking a system. Without proper
access controls, sensitive information that shouldn’t be shared between departments
may leak out. Imagine if any employee in the company could see HR payroll data or
financial data. What would happen if any employee could see that layoffs are coming
because of the poor financial situation of the company? This could be damaging to your
morale and your company’s reputation.

Sensitive information from the customers could also be lost. Companies in the
healthcare industry often have personal health information of customers that use their
services. Be careful not to accidentally expose personal information because of a lack of
access control.

For example, if your system gives users the ability to request a record of their health
information, do they also have the ability to request and see the health information
of others? If the URL contains a customer ID number, attackers could increment that
customer ID number over and over again until
they find one that matches another customer,
thus revealing their personal data.

BROKEN ACCESS CONTROL CONT'

Defeat Broken Access Control

Role-based access control (RBAC) is a very effective tool for implementing sound access
control. Those using Active Directory may be familiar with the idea of creating groups
and giving access to certain items to the group instead of the individual. Software works
the same way, using roles to define who is allowed to see what.

This has two advantages. First, a function doesn’t have to be changed when somebody
leaves the administrator role. If somebody previously was an administrator and
no longer is then you simply place a new person into the administrator role and
remove the previous person from the role. The code checks to see if the user has the
administrator role instead of checking to see if each individual user has access to a
certain page or function.

The second benefit is avoiding a maintenance nightmare. Access control that is so
granular that every person has associations with every single possible function or page
will be impossible to manage over time. Roles make things easier because multiple
people can be added to a role. One role may have the entire company while another
role has only five people. This makes managing the roles much easier because there
will be fewer roles to manage. A company of 10,000 people could have only 100 roles
instead of 10,000 times the number of functions in your software. Research your
chosen software framework to see what options exist for robust access control.

DEFEAT BROKEN ACCESS

BROKEN ACCESS CONTROL CONT'

Protect Your Sensitive Functions

Broken access control can leave your data and your software wide open for attack and
exploitation. Customer data that is not protected properly could lead to a massive data
breach, hurting your reputation and your revenue.

Broken access control could also lead to account takeover if attackers are able to access
functionality they shouldn’t access. Use proper functional level access control and
you’ll keep your software safe from malicious attackers and even accidental insiders.
Then, you’ll know that your data and your functions are safe and secure.

CUSTOMER DATA THAT IS NOT
PROTECTED PROPERLY COULD
LEAD TO A MASSIVE DATA BREACH,
HURTING YOUR REPUTATION AND
YOUR REVENUE.

https://portal.securecodewarrior.com/#/website-trial/web/access/functionlevel/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

XML injection attacks are nasty little exploits invented by hackers to help them
compromise systems hosting XML databases. This includes the kinds of things that come
to mind when one thinks about traditional databases - detailed stores of information
about anything from medicines to movies. Some XML datastores are also used to check
for authorized users, so injecting new XML code into them can create new users that the
host system will accept from that point forward.

For an attacker to implement an XML injection, there needs to be software which relies
on, or at least accesses, an XML database. Whenever that happens, and user input is not
properly vetted, new XML code can be added to the datastore. Depending on the skill of
the attacker, adding new XML code can do quite a lot of damage, or even provide access
to the entire database.

As you read on, you might discover that XML injection is closely related to the SQL
injection attacks that we previously covered. That’s because even though they target
different types of databases, they are extremely similar. And thankfully, the fixes are
similar as well. Learning how to defeat one type of attack will put you well ahead of the
game when working to prevent the other.

XML EXTERNAL ENTITIES
(XXE)

IN THIS CHAPTER WE WILL LEARN:

	 How XML injections work

	 Why they are so dangerous

	 How you can put defenses in place to
completely stop them

XML INJECTIONS ARE SUCCESSFUL
WHENEVER AN UNAUTHORIZED USER IS
ABLE TO WRITE XML CODE AND INSERT
IT INTO AN EXISTING XML DATABASE

https://www.youtube.com/watch?v=4yrGD9Xj-hY&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

How do Attackers Trigger XML Injections?

XML injections are successful whenever an unauthorized user is able to write XML
code and insert it into an existing XML database. This only requires two things to
work: software that relies on, or connects to, an XML database and an unsecured data
pathway for the attacker to launch their attack.

XML injections are almost always successful if user input isn’t sanitized or otherwise
restricted before being sent to a server for processing. This can allow attackers to write
their own code, or inject it, at the end of their normal query string. If successful, this
tricks the server into executing the XML code, allowing it to add or delete records, or
even reveal an entire database. Hackers implement an XML injection attack by adding
XML code to the end of a string for a normal query. This can be anything from a search
field to a login page. It might even include things like cookies or headers.

Why are XML Injections so Dangerous?

The level of danger involved in an XML injection attack depends on what information
is stored within the targeted XML database, or how that information is being used.
For example, in the case of an XML database being used to authenticate users, an
XML injection can give an attacker access to the system. It might even allow them to
become an administrator on the targeted network, which of course is an extremely
dangerous situation.

For XML injections levied against more traditional databases, the danger is in having
that information stolen, having incorrect data added to the store, or possibly having
good data overwritten. XML code is not very difficult to learn, and some of the
commands can be extremely powerful, overwriting entire information fields or even
displaying the contents of a datastore.

Generally, nobody builds a database unless the information stored there has value.
Hackers know this, which is why they often target them. If that data includes things like
the personal information on employees or customers, having it compromised can lead
to reputation loss, financial consequences, heavy fines or even lawsuits.

XML EXTERNAL ENTITIES (XXE) CONT'

For example, in a login field, a user
might add the following code after the
name or password field:

</user>

<user>

<role>administrator</role>

<username>John_Smith</username>

<password>Jump783!Tango@12</password>

In this example, a new user named John_Smith would be
created with administrator access. At least the new user is
employing good password density rules. Too bad they are
actually an attacker.

Hackers don’t necessarily need to always hit a homerun like
that to be successful with XML injections. By manipulating
their queries and recording the various error messages
that the server returns, they may be able to map out the
structure of the XML database. And that information can
be used to enhance other types of attacks.

Stopping XML Injection Attacks

XML Injections are fairly common due to the low degree of difficulty in pulling one off,
and the prevalence of XML databases. But these attacks have been around for a long
time. As such, there are several ironclad fixes that will prevent them from ever executing.

One of the best methods for stopping the attacks is to design software to only use
precompiled XML queries. This limits the functionality of the queries to an authorized
subset of activities. Anything that comes in with extra arguments, or commands that
don’t match the precompiled query functions simply won’t execute. If you don’t want
to be quite so restrictive, you can also use parameterization. This restricts user input to
specific types of queries and data, for example only using integers. Anything that falls
outside those parameters is considered invalid and forces the query to fail.

It’s also a good idea to pair precompiled or parameterized queries with customized
error messages. Instead of sending back the default, descriptive error messages from a
failed query, software should intercept those responses and replace them with a more
generic message. Ideally you will want to tell a user why the query failed, but not give
them any information about the database itself. If you restrict those custom messages
to just a few choices, hackers will not be able to compile any useful reconnaissance
from failed queries.

XML injections were highly successful when they were first developed. But given
how long ago that was, today we can easily construct defenses that can no longer
be breached.

 MORE INFORMATION ABOUT ABOUT XML INJECTIONS

For further reading, you can take a look at the OWASP writeup on XML injections.
You can also put your newfound defensive knowledge to the test with the FREE DEMO
of the Secure Code Warrior platform, which trains cybersecurity teams to become the
ultimate cyber warriors.

CHALLENGE ME NOW

XML EXTERNAL ENTITIES (XXE) CONT'

If you can’t parameterize your queries, you can also
restrict special characters by hand. This will prevent
attackers from forcing an XML database to consider code
injected into a query. In general, you will need to restrict
the following characters as well as blanks or whitespaces.

() = ‘ [] : , * /

https://portal.securecodewarrior.com/#/website-trial/web/injection/xml/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

The sensitive data exposure kind of attack has been one of the most impactful breaches
over the past few years. There is a medium level of sophistication required, and
sometimes special equipment on the part of the attacker, but it’s not overly hard for a
hacker to pull off in many cases, and tools exist to automate some of the attack functions.

Sensitive data exposure occurs whenever information that is only meant for authorized
viewing is exposed to an unauthorized person in a nonencrypted, unprotected, or
weakly protected state. Most of the time this involves typical data that hackers want
to steal such as credit card numbers, user identification, business secrets and personal
information that might be protected by laws and industry regulations.

These days, nobody would store highly targeted information like that without
encryption. But with sensitive data exposure, hackers can sometimes get at it anyway
by indirectly attacking the encryption scheme. Instead of trying to decrypt strong
encryption directly, they instead steal crypto keys, or attack data when it’s moved to a
non-encrypted state such as when it’s being readied for transport.

SENSITIVE
DATA EXPOSURE

IN THIS CHAPTER WE WILL LEARN:

	 How attackers can trigger sensitive
data exposure

	 Why sensitive data exposure is
so dangerous

	 Techniques that can fix this
vulnerability

SENSITIVE DATA EXPOSURE OCCURS WHENEVER
INFORMATION THAT IS ONLY MEANT FOR AUTHORIZED
VIEWING IS EXPOSED TO AN UNAUTHORIZED PERSON
IN A NONENCRYPTED, UNPROTECTED, OR WEAKLY
PROTECTED STATE.

https://www.youtube.com/watch?v=4hOej8A8D6o&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

SENSITIVE DATA EXPOSURE CONT'

How do Attackers Exploit Sensitive Data Exposure?

Sensitive data exposure normally happens when sites don’t employ strong end-to-
end encryption to protect data, or when there are exploitable flaws in the protection
scheme. It can also happen when the encryption used is particularly weak or outdated.

Hackers will often try and find ways to get around encryption if it’s not extended
everywhere. For example, if a password database stores information in an encrypted
state, but automatically decrypts it when retrieved, a hacker might be able to use one
of the attacks we previously covered in these blogs, such as SQL or XML injection,
to order the database to perform the decryption process. Then the data would be
decrypted for the hacker, with no additional effort required. Why try and break down a
steel door when you can just pickpocket the key?

Weak encryption is also a problem. For example, if credit cards are stored using an
outdated encryption scheme, it could be an issue if a hacker is able to use something
like a file upload attack to pull the entire database over to their computer. If the
captured data was protected using something strong like AES-256 bit encryption, then
it would still be unbreakable even if it landed in a hacker’s possession. But if weaker or
outdated encryption is used, something like the older DES standard, then a hacker with
special equipment such as a rack of graphics processing units (GPUs) can task them to
break the encryption in a relatively short amount of time.

Why is Sensitive Data Exposure Dangerous?

Sensitive data exposure is dangerous because it lets unauthorized users see protected
information. If the data wasn’t important, it wouldn’t be protected, so any breach of
that protection is going to cause problems. It’s never a situation that an organization
wants to find itself facing.

How much trouble a sensitive data exposure can cause depends on the kind of
data that gets exposed. If user or password data is stolen, then that could be used
to launch further attacks against the system. Personal information exposure could
subject users to secondary attacks such as identity theft or phishing. Organizations
might even find themselves vulnerable to heavy fines and government actions if the
exposed data is legally protected by statutes like the Health Insurance Portability
and Accountability Act (HIPAA) in the United States or the General Data Protection
Regulation (GDPR) in Europe.

HACKERS WILL OFTEN TRY AND FIND
WAYS TO GET AROUND ENCRYPTION IF
IT’S NOT EXTENDED EVERYWHERE

Eliminating Sensitive Data Exposure

Stopping sensitive data exposure begins with ensuring strong, up-to-date and end-to-
end encryption of sensitive data across an enterprise. This includes both data at rest
and in transit. It’s not enough to encrypt sensitive data while it sits in storage. If it is
unencrypted before use or before transport, then it can be exposed using a secondary
attack that tricks a server into unencrypting it.

Data in transit should always be protected using Transport Layer Security (TLS) to
prevent exposure using man in the middle or other attacks against moving data. And
sensitive data should never be cached anywhere in the network. Sensitive data should
either be sitting with strong encryption in storage or sent using TLS protection, giving
attackers no weak points to exploit.

Finally, do an inventory of the kinds of sensitive data that is being protected by your
organization. If there is no reason for your organization to store such data, then dump
it. Why expose yourself to potential trouble for no possible benefit? Data that isn’t
maintained by an origination can’t be stolen from it.

 MORE INFORMATION ABOUT SENSITIVE DATA EXPOSURE

For further reading, you can take a look at what OWASP says about sensitive data
exposure. You can also put your newfound defensive knowledge to the test with the
FREE DEMO of the Secure Code Warrior platform, which trains cybersecurity teams to
become the ultimate cyber warriors.

FIX SENSITIVE DATA EXPOSURE

SENSITIVE DATA EXPOSURE CONT'

DATA IN TRANSIT SHOULD ALWAYS BE PROTECTED
USING TRANSPORT LAYER SECURITY (TLS) TO
PREVENT EXPOSURE USING MAN IN THE MIDDLE
OR OTHER ATTACKS AGAINST MOVING DATA

TLS

https://portal.securecodewarrior.com/#/website-trial/web/infoexposure/sensitiveinfo/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

In this chapter we will cover one of the most common problems faced by organizations
that either run websites or which allow employees to remotely access computer
resources – which is pretty much everyone. And yes, you probably guessed that we are
going to be talking about authentication.

While authentication vulnerabilities are not exploits themselves, having them as part
of a login or user authorization process makes an attacker’s work easy. If a hacker can
simply log into a system as an administrator with a valid user name and password, then
there is no need to deploy advanced techniques to battle network defenses. The system
simply opens the door and lets the attacker inside. Worse yet, if the attacker doesn’t
do anything too outlandish, their presence is almost impossible to detect since most
defenses will simply see them as a valid user or administrator doing their job.

The category of authentication vulnerabilities is quite large, but we will go over the
most common problems that tend to get accidentally baked into user login processes.
By shoring up these holes, you can eliminate the vast majority of authentication
problems from your organization.

How do Attackers Exploit Authentication
Vulnerabilities?

There are quite a few authentication vulnerabilities that might creep into a login or
user authorization system, so hackers exploit each one a little bit differently. First, lets
go over the most common vulnerabilities and then give examples demonstrating how a
couple of them might be exploited.

BROKEN
AUTHENTICATION

XSS
IN THIS CHAPTER, WE WILL LEARN:

	 How some common authentication
vulnerabilities are exploited

	 Why they are so dangerous

	 What policies and techniques can
be used to eliminate authentication
vulnerabilities

https://www.youtube.com/watch?v=XUoh5KHoqXU&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

The most common authentication vulnerabilities include:

	 Having weak or inadequate password policies,

	 Allowing unlimited login attempts,

	 Providing information back to an attacker on failed logins,

	 Sending credentials over insecure channels,

	 Weakly hashing passwords,

	 And having an insecure password recovery process.

A less obvious but still dangerous vulnerability is providing information back to a user
regarding a failed login. This is bad because if you return one message when a user
name does not exist and another when a user name is correct but the password is bad,
it allows attackers to map out valid users on a system and concentrate on guessing
passwords. If this is combined with the authentication vulnerability that allows
unlimited password guessing, it would enable attackers to run dictionary attacks against
whatever valid users they have found, which might get them into a system fairly quickly
if the password they are trying to guess is simply a word or well-known phrase.

Why are Authentication Vulnerabilities so Dangerous?

There is a classic tale from the American Old West about a paranoid homesteader who
installed triple locks on his front door, boarded up his windows and slept with lots of
guns in easy reach. In the morning he was found dead. His attackers got to him because
he forgot to lock the back door. Authentication vulnerabilities are a lot like that. It
really doesn’t matter what kind of cybersecurity platform you are running or how many
expert analysists you employ if an attacker can simply submit a valid user name and
password to enter your network unopposed.

Once inside, there are very few restrictions on what that attacker can do. So long
as they act within their user permissions, which can be quite extensive if they have
compromised an administrator account, there is very little chance that they will be
caught in time to prevent serious problems. This makes the authentication class of
vulnerabilities one of the most dangerous to have on any system.

BROKEN AUTHENTICATION CONT'

Having a weak password policy is likely the most common vulnerability. If users
are allowed to create passwords with no restrictions, far too many of them will use
easily guessable ones. Every year various computer news organizations put out a list
of the most used passwords, and “123456” and “password” are always in the top
five. There are others. Administrators like to use “God” quite a lot. True, those are
all either humorous or easy to remember, but also very easy to guess. Hackers know
what the most common stupid passwords are, and try them first when attempting

to breach a system. If those kinds of passwords are allowed in your
organization, you will get breached eventually.

123456
PASSWORD

GOD

Eliminating Authentication Vulnerabilities

One of the best ways to eliminate authentication vulnerabilities from a network
is to have good, globally enforced password policies. Not only should users, even
administrators, be restricted from using passwords like “password” but should be
forced to add in a level of complexity that would make it unfeasible for an attacker to
apply a dictionary or common phrases type of attack.

Optionally, passwords should also be no more than 128 characters long and not have
more than two identical characters grouped together.

Doing that will prevent attackers from guessing passwords. You should also restrict the
number of failed password attempts so that if an incorrect password is entered more
than, say three times, the user is locked out. The lockout can be temporary as even a few
minutes delay will prevent dictionary attacks from continuing. Or it can be permanent
unless the account is unlocked by an administrator. In either case, security personnel
should be alerted whenever such a lockout occurs so they can monitor the situation.

Another good way to prevent attackers from gathering information is to craft a generic
message whenever either a bad user name or password is entered. It should be the
same for both cases so that hackers wont know if they have been rejected because a
user does not exist or due to having the wrong password.

Authentication vulnerabilities are among the most common and dangerous on most
systems. But they are also fairly easy to find and eliminate.

 MORE INFORMATION ABOUT AUTHENTICATION VULNERABILITIES
For further reading, you can take a look at the OWASP authentication cheat sheet. You
can also put your newfound defensive knowledge to the test with the FREE DEMO of
the Secure Code Warrior platform, which trains cybersecurity teams to become the
ultimate cyber warriors.

CHALLENGE ME NOW

PASSWORDS MUST CONTAIN:
	 at least 1 uppercase character (A-Z),

	 at least 1 lowercase character (a-z),

	 at least 1 digit (0-9),

	 at least 1 special character including punctuation marks & spaces,

	 be at least 10 characters long.

You can come up with your own
rules for password creation
based on the importance of the
system being protected, but a
good standard is to force at least
three of the following complexity
rules on password creation.

BROKEN AUTHENTICATION CONT'

https://portal.securecodewarrior.com/#/website-trial/web/auth/generic/c_sharp/mvc?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

In simple terms, SQL (or Structured Query Language) is the language used to
communicate with relational databases; it’s the query language used by developers,
database administrators and software to manage the massive amounts of data being
generated every day.

Our data is fast becoming one of the world’s most valuable commodities... and when
something is valuable, bad guys will want to get their hands on it for their benefit.

Attackers are using SQL injection -- one of the oldest (since 1998!) and peskiest data
vulnerabilities out there -- to steal and change the sensitive information available
in millions of databases all over the world. It’s insidious, and developers need to
understand SQL injection (as well as how to defend against it) if we are to keep our
data safe.

Understand SQL Injection

SQL injection can be understood by using one word: context.

Within software, two contexts exist: one for data, the other for code. The code context
tells the computer what to execute and separates it from the data to be processed. SQL
injection occurs when an attacker enters data that is mistakenly treated as code by the
SQL interpreter. One example is an input field on a website, where an attacker enters “‘
OR 1=1” and it is appended to the end of a SQL query. When this query is executed, it
returns “true” for every row in the database. This means all records from the queried
table will be returned.

The implications of SQL injection can be catastrophic. If this occurs on a login page, it
could return all user records, possibly including usernames and passwords. If a simple
query to take data out is successful, then queries to change data would too.

INJECTION

TO THAT END, WE’LL DISCUSS THREE
KEY ASPECTS OF SQL INJECTION:

1	 How it works

2	 Why it’s so dangerous

3	 How to defend against it
SQL

Let’s take a look at some vulnerable code so that you can see what an SQL injection
vulnerability looks like in the flesh.

Check out this code:

The code here simply appends the parameter information from the client to the end of
the SQL query with no validation. When this happens, an attacker can enter code into
an input field or URL parameters and it will be executed.

The key thing is not that attackers can only add “‘ OR 1=1” to each SELECT query but
that an attacker can manipulate any type of SQL query (INSERT, UPDATE, DELETE, DROP,
etc.) and extend it with anything the database supports. There are great resources and
tools available in the public domain that show what is possible.

WE’LL LEARN HOW TO CORRECT THIS
ISSUE SOON. FIRST, LET’S UNDERSTAND
HOW MUCH DAMAGE CAN BE DONE.

INJECTION CONT'

String query = "SELECT account balance FROM user_data WHERE user_name = "
+ request.getParameter("customerName");

try {
 Statement statement = connection.createStatement(...);
 ResultSet results = statement.executeQuery(query);
}

https://www.youtube.com/watch?v=oLahd_ksX6c&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10
https://www.youtube.com/watch?v=oLahd_ksX6c&utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Defeat SQL Injection

SQL injection can be defeated by clearly labeling parts of your software, so the computer
knows whether a certain part is data or code to be executed. This can be done using
parameterized queries.

When SQL queries use parameters, the SQL interpreter will use the parameter only as
data. It doesn’t execute it as code.

For example, an attack such as “‘ OR 1=1” will not work. The database will search for the
string “OR 1=1” and not find it in the database. It’ll simply shrug and say, “Sorry, I can’t
find that for you.”

Most development frameworks provide built-in defenses against SQL injection.

Object Relational Mappers (ORMs), such as Entity Framework in the .NET family, will
parameterize queries by default. This will take care of SQL injection without any effort on
your part.

However, you must know how your specific ORM works. For example, Hibernate, a
popular ORM in the Java world, can still be vulnerable to SQL injection if used incorrectly.

Parameterizing queries is the first and best defense, but there are others. Stored
procedures also support SQL parameters and can be used to prevent SQL injection. Keep
in mind that the stored procedures must also be built correctly for this to work.

// This should REALLY be validated too
String custname = request.getParameter("customerName");
// perform input validation to detect attacks
String query = "SELECT account_balance FROM user_data
WHERE user_name = ? ";

PreparedStatement pstmt = connection.preparedStatement(
query);
pstmt.setString(1, custname);
ResultSet results = pstmt.executeQuery();

INJECTION CONT'

An example of a parameterized
query in Java looks like this:

PLAY NOW

Always validate and sanitize your inputs. Since some characters, such as “OR 1=1” are
not going to be entered by a legitimate user of your software, there’s no need to allow
them. You can display an error message to the user or strip them from your input
before processing it.

In saying that, don’t depend on validation and sanitization alone to protect you.
Clever humans have found ways around it. They’re good Defense in Depth (DiD)
strategies, but parameterization is the surefire way to cover all bases. Another good DiD
strategy is using ‘least privilege’ within the database and whitelisting input. Enforcing
least privilege means that your software doesn’t have unlimited power within the
database. If an attacker were to gain access, the damage they can do is limited.

The Journey Begins
You’ve made some great progress towards understanding SQL injection, and the steps
needed to fix it. Awesome!

We’ve discussed how SQL injection occurs; typically with an attacker using input to
control your database queries for their own nefarious purposes. We’ve also seen the
damage caused by the exploitation of SQL injection vulnerabilities: Accounts can be
compromised and millions of dollars lost… a nightmare, and an expensive one at that.

We’ve seen how to prevent SQL injection:

	 Parameterizing queries

	 Using object relational mappers and stored procedures

	 Validating and whitelisting user input

NOW, IT’S UP TO YOU.
Practice is the best way to keep learning and building mastery, so
why not check out our Learning Resources on SQL injection, then
try our FREE DEMO of the platform? You’ll be well on your way to
becoming a Secure Code Warrior.

INJECTION CONT'

 	SQL injection in C#

 	SQL injection in Node.js

 	SQL injection in Python Django

 	SQL injection in Java Spring

OWASP has a great SQL Injection Cheat Sheet available to
show how to handle this vulnerability in several languages and
platforms… but if you want to go one better, you can play a SQL
injection challenge in your preferred language on our platform
right now; here’s some of the more popular ones to get started:

</>_[;"=*}

https://portal.securecodewarrior.com/#/website-trial/web/injection/sql/c_sharp/web_forms?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

Want more information on
how to conquer security?

Want to see how we can benefit
you and your team at work?

BLAST OFF!
	 Learn security best practice while having fun

in a highly engaging, gamified environment
using real code

	 Contribute to the security strength of your
organizaton, helping to reinforce a positive,
secure-by-design culture

	 Be empowered with the tools and knowledge
to build secure code from the start.

DISCOVER OUR RESOURCES REQUEST A DEMO

THE TEN MOST COMMON SECURITY VULNERABILITIES
DON’T STAND A CHANCE AGAINST SECURE DEVELOPMENT
SUPERHEROES LIKE YOU.

ABOUT SECURE CODE WARRIOR

Secure Code Warrior is a global security company that makes software development better and more secure. Our vision is to empower
developers to be the first line of defense in their organization by making security highly visible and providing them with the skills and tools to
write secure code from the beginning. Our powerful platform moves the focus from reaction to prevention, training and equipping developers
to think and act with a security mindset as they build and verify their skills, gain real-time advice and monitor skill development. Our customers
include financial institutions, telecommunications providers and global technology companies in Europe, North America and Asia Pacific.

Copyright © 2019 Secure Code Warrior. All rights reserved.
Copyright © 2019 Secure Code Warrior. All rights reserved.

securecodewarrior.com

https://securecodewarrior.com/resources?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10
https://securecodewarrior.com/request-demo?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10
http://www.securecodewarrior.com
https://www.instagram.com/securecodewarrior/
https://twitter.com/SecCodeWarrior?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10
https://www.facebook.com/securecodewarrior/?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10
mailto:info%40securecodewarrior.com?subject=
https://www.linkedin.com/company/secure-code-warrior/
https://insights.securecodewarrior.com/?utm_source=website&utm_medium=ebook&utm_campaign=owasp_top_10

